ISSN: 2307-5651 (Print), 2412-5296 (Online) N2 34,2025

EKOHOMIKO-MATEMATUYHE MOAEJIOBAHHA
BISBHECOBUX NPOLLECIB

UDC 336.712.38
JEL Classification: G11, B50
DOI: https://doi.org/10.20535/2307-5651.34.2025.341984

Lazarenko Iryna

Ph.D. in Mathematics
(corresponding author)

ORCID ID: 0000-0002-3384-1186

Krykun Yevhen

Master Student

ORCID ID: 0009-0001-5146-4273
National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”

PORTFOLIO MANAGEMENT WITH DATA MINING TECHNIQUES
IN TIME SERIES ANALYSIS

This study explores the application of Data Mining techniques, specifically deep neural networks (DNN) and recurrent
neural networks (RNN), for optimizing stock portfolios. Using time series data, we compare the performance of DNN and
RNN models in predicting stock prices and constructing optimal portfolios. Key evaluation metrics demonstrate that the RNN
model's forecasts yield a portfolio with income and risk metrics that closely match actual values, outperforming the DNN
model. Furthermore, the RNN model's portfolio weights show a stronger alignment with actual distributions, indicating superior
predictive accuracy in asset allocation. This study concludes that RNN, with their inherent capability for processing sequential
data, are particularly well-suited for time series forecasting in financial applications.

Keywords: portfolio management, Data Mining techniques, Deep Neural Networks, Recurrent Neural Networks, investment.

Jlazapenko L. C., Kpukyn €. O.
Hayionanvuuii mexuiunuii ynieepcumem Yxpainu
«Kuiscoruii nonimexuiynuii ynisepcumem imeni leopa Cikopcoko2oy

YIHPABJIIHHA MOPT®EJIEM HIHHUX ITAIIEPIB
3 BUKOPUCTAHHAM METOIB IHTEJIEKTYAJIBHOI'O AHAJII3Y JAHUX
Y AHAJII3I HACOBHUX PAIIB

YV Oaniii cmammi komniekcHo 00CRiONCYEMbCA 3ACMOCYBAHHA NEPedosUX Memodie IHMeNeKmMyaibH020 AHANIZY OaHUX
(Data Mining), 30xkpema enuboxux Hetiponnux mepesc (DNN) ma pexypenmuux Heuponnux mepesc (RNN), ons onmumizayii
ynpasninua ingecmuyiinumu nopmeenamu. Hezeadicaiouu na meopemuuny yiHHicmo K1ACUYHUX NOPMEensHUX meopit, ixHs
HeeghekmusHiCmb Yy YMOBAX WEUOKOIMIHHUX PUHKIE 00YMOBIIOE HEOOXIOHICMb PO3POOKU CYHACHUX NIOX00I8 00 NPOSHO3YEAHHS
onoosux punkie. Jlane 00CTIONCEHHS IDYHMYEMbCA HA AHALI3T 4ACOBUX PAOIS I3 3ACMOCYBAHHAM NOPIGHATLHO20 NIOX0QY 00
oyinku egpexmugnocmi mooenei DNN ma RNN y npocno3yeanti OuHaAMIKU YiH akyiil ma nooanbuii onmumisayii cmpykmy-
pu iHgecmuyitino2o nopmens. Pezynomamu 00CRiONHCeHHs, OMPUMAHI HA OCHOBI Katouosux mempuk axkocmi (MSE, MAE,
MAPE,), oemoncmpytoms nepeeazy mooeini RNN, saxa cucmemno nokazye Kpawjy 6i0n08iOHICmb peanbHUM PUHKOBUM OAHUM
y nopisusnui 3 DNN. TIpoenosni modeni, nobyoosani na ochosi RNN, do3zeonsioms gpopmyeamu nopmeens 3 OnmumMaibHUMu
CNi6BIOHOWEHHAMU 00X00Y MaA PUBUKY, MAKCUMANLHO HAOIUNCEHUMU 00 PeaNbHUX PUHKOBUX YMO8, a MAKoC 3abe3neyyioms
Oinbw moyHul po3nodin eae akmusis. Lle ceiouums npo suwgy npoenocmuuny mounicmos RNN y 3a0auax po3noodiny akmusis
ma ynpaeninus nopmenem. Mooicna 3pobumu eucrnosox, ujo RNN, 3a60saKu apximexkmypi, opi€cHmMmo6auii Ha 0OpoOKY nocii-
006HUX OAHUX, € NePCHEKMUBHIUUM THCMPYMEHMOM OJisl NPO2HO3Y8AHHA PIHAHCOBUX Yacosux psadie. Ompumani pesyrbmamu
NIOKPEComMb NOMEHYIA Memooie IHMeNeKmyaibHO20 AHANIZY OaHUX OJisi 600CKOHALEHHS [H8eCMUYIIHUX cmpame2itl ma
00TPYHMOBYIOMb HeOOXIOHICMb NOOANBUUX OOCTIONCEHb U000 PO3POOKU IOPUOHUX MoOdeneld Ons onmumizayii nopmeenie y
YMO8ax 8ucokoi punkogoi sonamunvocmi. OKpim moco, 6 Cmammi po3ensioaiomsbCs NPAKMuYHi ACNeKmu IMniIeMeHmayii yux
MoOelell Y peanbHi cucmemu mopeieii, aHanizyromvcs 00MelCeH s, N08'I3ani 3 IXHIM 3aCMOCYBAHHAM, MA NPONOHYIOMbCS
HANpAMU NOOANLUUX Q0CTI0NHCEHb Ol NOOONAHHA YUX 00MedceHb. [[0CTIOHNCEH S MAKONHC BUCBIMIIOE BANCTUBICMb 00POOKU
BENIUKUX MACUBIE OAHUX PedTibHO20 YAC) Ma HeoOXIOHICmb adanmayii mooenetl 00 Pi3HUX PUHKOBUX PeXHCUMI8 05l 3a0e3neueH-
Hsl cmabinbHOI eghekmusHoCmi.

Knruosi cnosa: ynpaeninns ingecmuyitinum nopmaenem, Memoou iHmeieKmyaibH020 aHaizy OaHux, enuboKi HelupoHHI
Mepedici, peKypeHmHI HeUpPOHHI Mepedxci, IHBeCmYBaHHs.

© Lazarenko Iryna, Krykun Yevhen, 2025 99

«ExoHomiuHull gicHUK HTYY "Kuigcokuli nonimexHiyHul iHcmumym”»

N2 34,2025

Problem statement. In the context of an active war
phase, the question of investing funds in foreign securities
has become increasingly relevant for Ukrainian investors.
One of the most attractive and relatively low-risk options is
the U.S. stock market, which has demonstrated resilience
even during global financial crises. Constructing a stock
portfolio is a complex process that requires a broad skill
set, encompassing not only portfolio theory but also an
understanding of stock market trends and the impact of
geopolitics and economic shifts on the global economy.

While traditional methods for constructing an optimal
portfolio date back to the 1950s and have been extensively
studied, these approaches have limitations due to their
inability to fully account for current trends and rapid changes
in the economy. This research aims to explore a modernized
approach to portfolio optimization by applying Data Mining
techniques in time series analysis. Contemporary Data
Mining methods, such as Deep Neural Networks (DNN) and
Recurrent Neural Networks (RNN), enhance the accuracy
of stock predictions, demonstrating significantly higher
precision than classical algorithms like ARIMA. These
models not only improve forecasting but also allow for
portfolio construction across different timeframes, including
forecasts for several months into the future.

This study conducts a comparative analysis of two
types of neural networks: DNN and RNN. This compari-
son is somewhat unconventional, as stock price forecast-
ing typically utilizes another type of recurrent neural net-
work — Long Short-Term Memory (LSTM). Based on the
predicted values, a stock portfolio will be constructed, and
the forecasted outcomes will be compared with actual port-
folio performance. This analysis will help determine which
method performs better on a selected set of corporate secu-
rities, providing insights into the efficacy of Data Mining
techniques in portfolio management.

Analysis of recent research and publications. The lit-
erature review should begin with an examination of classi-
cal portfolio theory, pioneered by the renowned American
economist Harry Markowitz. American economist Harry
Markowitz was one of the first to recognize the advantages
of optimizing a stock portfolio, writing a dissertation on
“Portfolio Selection” in 1952. Modern Portfolio Theory
(MPT) remains a widely adopted investment strategy that
contrasts with traditional stock picking. MPT provides
tools for portfolio management that, when applied cor-
rectly, can help create a diversified and profitable invest-
ment portfolio [1].

MPT is a theory of financial investments that employs
statistical methods to optimize risk distribution in a securi-
ties portfolio and to estimate returns. Key components of
this theory include asset valuation, investment decision-
making, portfolio optimization, and performance measure-
ment. Despite its abstract nature and lack of consideration
for practical aspects like taxes and operational costs, as
well as assumptions about infinite divisibility of assets and
uniform investor information, MPT and its advancements
in CAPM and arbitrage theory have significant practical
value. These models offer foundational insights into ba-
lancing portfolio returns and risk [2].

On an ideal securities market, portfolio managers can
analyze market trends, forecast future performance, and
evaluate the investment characteristics of financial instru-
ments. Theoretical aspects of MPT reveal general patterns
in the securities market, enabling effective criteria for prac-

100

tical application. MPT assumes that in developed financial
markets, institutions are well-informed and operational
costs are negligible relative to transaction volumes, allow-
ing these factors to be disregarded in certain cases [2].

Markowitz's model presents portfolio formation as a
combination of potential investments, with the primary
goal being to find optimal asset allocation proportions
that minimize risk for a given level of return or maximize
expected returns at an acceptable risk level. The model
identifies an “efficient” portfolio, which offers the least risk
at a specified return level, but it does not suggest a single
optimal portfolio.

These theoretical developments are crucial for inves-
tors, allowing a rational approach to building a stock
portfolio that considers risk levels and expected returns.
An optimal portfolio helps diversify risks and maximize
potential returns. Additionally, Markowitz’s model and
MPT enable investors to make informed decisions and
effectively manage their investments.

Key assumptions of the Markowitz model include:

1. Expected returns are represented by the mathemati-
cal expectation of returns.

2. Risk is represented by the standard deviation of
returns.

3. Past data used in return and risk calculations fully
reflect future values.

4. The correlation coefficient expresses the degree and
nature of relationships between securities [3].

Markowitz’s formula allows investors to mathemati-
cally align risk tolerance with reward expectations, form-
ing an ideal portfolio. This theory is based on two core
principles:

1. Every investor aims to maximize return at any risk
level.

2. Risk can be reduced by diversifying a portfolio with
uncorrelated securities.

In stock market prediction, accurate forecasting of
stock prices is highly valuable for investors and analysts.
Data Mining techniques, especially Dense Neural Net-
works (DNNs) and Simple Recurrent Neural Networks
(RNNs), have been widely applied for time series forecast-
ing due to their ability to model complex, non-linear pat-
terns inherent in financial data. Both methods offer distinct
advantages in processing and forecasting stock prices, with
DNNs excelling in capturing static patterns and RNNs in
handling sequential data and temporal dependencies.

DNN:gs, also known as fully connected networks, consist
of multiple layers of interconnected neurons. Each neuron
in a layer is connected to every neuron in the preceding and
succeeding layers, enabling the model to capture patterns
by learning non-linear transformations through its lay-
ers. DNNs are advantageous for tasks where relationships
between features are non-linear and complex, which aligns
well with stock market data's inherent unpredictability [4].

In stock prediction, DNNs are often applied to trans-
form historical stock prices, trading volumes, and various
financial indicators into useful feature representations. By
learning from historical data, a DNN can generalize pat-
terns such as the impact of trading volume on stock price
trends or the correlation between prices of different stocks.
For example, a model trained with price movements over
the last year may capture essential patterns indicating
growth, stability, or volatility, which aids in predicting
future stock behaviour.

ISSN: 2307-5651 (Print), 2412-5296 (Online)

N2 34,2025

One limitation of DNNs is their lack of inherent
sequential memory, which makes it challenging to capture
time dependencies. Stock prices, however, rely heavily
on historical prices and events, often demanding a model
with memory to retain information about the sequence of
past observations. This limitation makes DNNs more suit-
able for static features or scenarios where past trends are
assumed to have limited long-term influence.

Simple RNNs are a natural fit for time series forecast-
ing due to their ability to maintain a sequential under-
standing of data over time. Unlike DNNs, RNNs are
designed with loops within their architecture, allowing
them to “remember” previous outputs by storing infor-
mation about past inputs. This memory-like structure is
well-suited for tasks that involve temporal dependencies,
such as predicting future stock prices based on historical
price sequences.

In stock prediction, RNNs are trained on sequences of
past stock prices, and they learn patterns that can inform
the future trajectory of the price. This includes identifying
trends, such as cyclical price patterns or momentum, which
are characteristic of stock market behavior. For instance, an
RNN model can learn from past upswings and downswings
in stock prices, adjusting predictions based on recent pat-
terns rather than treating each data point in isolation. Such
a method enables the model to forecast prices more effec-
tively by taking advantage of the correlation across differ-
ent time steps.

However, Simple RNNs are not without limitations.
One primary drawback is their tendency to suffer from van-
ishing gradient issues, which can lead to the model “forget-
ting” information from earlier time steps. This problem can
affect prediction accuracy, particularly when forecasting
based on long time series, which is typical in stock market
analysis. Advanced variants like Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Unit (GRU) networks
have been introduced to mitigate this issue, though Simple
RNNSs are still useful in shorter-term or smaller-scale time
series prediction tasks [4].

Formulating the purposes of the article. This
research aims to develop a modernized portfolio optimi-
zation framework that enhances the classical Markowitz
theory through the integration of forward-looking risk
assessment methodologies. The primary objective is to
address the inherent limitation of traditional models, which
rely exclusively on ex-post factual data and consequently
fail to adequately incorporate prevailing market trends and
future dynamics.

To achieve this objective, the study formalizes a multi-
criteria optimization problem that simultaneously maxi-
mizes expected return and minimizes portfolio risk by
converging these dual objectives into a single minimiza-
tion functional subject to constraints. A crucial scientific
contribution involves the proposed substitution of the his-
torical covariance matrix with its forecasted counterpart,
enabling more accurate quantification of future stochastic
dependencies among assets.

Leveraging contemporary big data analytics capabili-
ties, the proposed approach facilitates the construction of
more adaptive and robust portfolios capable of respond-
ing to evolving market conditions, rather than merely
reflecting their historical behavior. This methodological
advancement represents a significant departure from con-
ventional portfolio optimization techniques by incorpo-

rating probabilistic forward-looking measures into the
risk-return paradigm.

Presentation of the main research material. In
accordance with Markowitz's theory, the expected return
of a portfolio is calculated by a formula that integrates
various factors and their interrelations:

R,=YRw, (1)

where R, is the return on the portfolio,

R, —return on the asset,

w, — share of the asset in the portfolio.

The portfolio's expected risk quantifies its potential
for loss, indicating the likelihood of capital reduction
based on the chosen asset allocation and weights. The
expected portfolio risk is mathematically represented as
the standard deviation of its return. Prior to obtaining this
standard deviation, we first calculate the return variance,
which measures the dispersion or fluctuation in the returns
of assets. A higher variance implies a greater volatility
risk, as actual returns may diverge from expectations. In
Markowitz's framework, this variance is defined by:

@ =SS en(BR)T T, O
T i

where ci is the variance of portfolio returns.
The portfolio's expected risk, or standard deviation, is

derived as:
G, =4 / G; , 3)

This portfolio is constructed based on Markowitz's
portfolio theory, incorporating specific modifications. The
expected return and risk of the portfolio are calculated using
formulas (1) to (3). For effective optimization, focusing on
both return maximization and risk minimization, multi-
criteria optimization is applied.

The first criterion is the expected return function,
optimized as follows:

fi= Rp — max, 4

The second criterion is to minimize the total portfolio
risk:

f, =0, > min, 5)

With both objective functions established, we proceed

to a convolution of criteria, optimizing the objective
function for a minimum while subject to the constraints:

2w =1

i=1

w, 20,01, 6)
Rp >0

c, >0

The target function that will be optimized:

a*c
W=——L——5min, (7

(l_a)*Rp

101

«ExoHomiuHull gicHUK HTYY "Kuigcokuli nonimexHiyHul iHcmumym”»

N2 34,2025

Having defined the main criterion and constraints, we
have an optimization problem to find the optimal stock
portfolio:

W a*Jw' *covtw
(l—a)*Z;Ri *y,

— min

2= , ®)
w, 20,01

n
ZRi*I/\/i >0
i=l1

W *covFEw >0

With the development of technologies and Big Data
tools, Markowitz's theory can be easily applied in practice
for a large set of different papers in a portfolio. Despite
this, Markowitz's theory has a significant flaw — the lack
of consideration for market trends. To overcome this flaw
in Markowitz's theory, a modernized method of calculating
the covariance matrix is applied, which is used for risk
calculation — forecasting the covariance matrix of risks [5].

Deep Neural Networks with Dense Layers. A dense
neural network, also called a fully connected or feed-
forward neural network, is built by stacking several layers of
neurons. In this structure, each layer is linked to all neurons
in the previous layer, enabling the model to detect and learn
data patterns. In a sequential model, data passes through
each layer one after another, moving from input to output.
The mathematical representation of a dense layer is:

yzf(Wx-i—b), 9)

where W — weight matrix,

X — input vector,

b — bias vector,

f— activation function (in our case ReLU) [6].

The ReLU (Rectified Linear Unit) activation function
outputs the input directly if it is positive; otherwise, it returns
zero, allowing for faster training by introducing non-linearity
while mitigating the vanishing gradient problem. The formula
for the ReLU (Rectified Linear Unit) activation function is:

ReLU (x)=max(0,x)= (10)

x+|x|_ xif x>0
2 |0ifx<0’

where x — the input to a neuron [7].

The output layer is a single neuron that provides the pre-
dicted stock price at the next time step. For regression tasks,
the output neuron typically uses a linear activation function:

Niy
)A/ =z = Zwmz(“) +b\,

i=1

(11)

where w'*) — the weights of the output layer,

b® — the bias of the output layer,

y —they predicted stock price for the next time step.

In Python, the Sequential model with dense layers is
structured as follows.

The model followed by three dense (fully connected)
hidden layers with ReLU activations and neuron counts
of 150, 100, and 50, respectively. The output layer has
a single neuron for the final prediction. The model is
optimized with Stochastic Gradient Descent (SGD) with
momentum, set at a learning rate of 10-6 and a momentum
factor of 0.9, and is compiled with Mean Squared Error
(MSE) as the loss function. It is trained over 150 epochs
on the given dataset.

Recurrent Neural Networks. Recurrent layers,
first introduced in the 1980s, form the foundational
structure of Recurrent Neural Networks (RNNs), which
are specifically engineered to handle sequential data.
This design makes RNNs well-suited for applications in
natural language processing, time series forecasting, and
sequence-to-sequence learning. A notable early model is
the Elman Network, developed by Jeff Elman. Recurrent
layers incorporate an internal hidden state that evolves
dynamically over time, enabling the network to retain
information from previous time steps. The update of this
hidden state is mathematically expressed as:

h=f(Wh-x,+W,h-h(t=1)+b,), (12)
where /4, — hidden state at time step ¢,

X, — input at time step ¢,

W h — input-to-hidden weight matrix,

W,h — hidden-to-hidden weight matrix,

b, — bias vector,

f— activation function (in our case ReLU) [6].

model_tune = tf.keras.models.Sequential([

tf.keras.Input(shape=(window_size,)}),

tf.keras.layers.Dense(150, activation="relu"),
tf.keras.layers.Dense(100, activation="relu"),

tf.keras.layers.Dense(50, activation="relu"),

tf.keras.layers.Dense(1)
1)

optimizer = tf.keras.optimizers.SGD(learning_rate=1e-6, momentum=9.9)

model tune.compile(loss="mse", optimizer=optimizer)

history = model_tune.fit(dataset, epochs=15@, verbose=0)

Figure 1. DNN with Dense Layers structure

102

ISSN: 2307-5651 (Print), 2412-5296 (Online)

N2 34,2025

For the RNN model, the same activation function
is used, which can be seen in formula (10). In Python,
the RNN Sequential model with SimpleRNN layers is
structured as follows.

The model consists of an input layer with a specified
window size, followed by two SimpleRNN layers with
40 units each, using the ReLU activation function. The first
RNN layer returns sequences, feeding into the second RNN
layer, which connects to a final Dense layer with a single
output neuron for regression. The model uses the Huber loss
function and is optimized with Stochastic Gradient Descent
(SGD) with a learning rate of 10-5 and momentum of 0.9,
and it tracks Mean Absolute Error (MAE) as a performance
metric. Training is conducted over 100 epochs on the
provided dataset.

Evaluation Metrics. In time series analysis, four
primary metrics are commonly employed to evaluate
model performance: Mean Absolute Error (MAE), Mean
Squared Error (MSE), Mean Absolute Percentage Error
(MAPE), and the Coefficient of Determination (R?).

MAE measures the average magnitude of errors
between predicted and observed values, without regard to
direction, providing a straightforward interpretation of the
typical prediction error [8]:

s 1§

i=1

Yi= Vil (13)

where y, — the observed value,

v, —the predicted value,

n — the total number of observations.

MSE calculates the average of the squared differences
between predicted and observed values, penalizing
larger errors more heavily and highlighting significant
discrepancies [8]:

n

MSE :lz<yi _j;i)29

nig

(14)

MAPE expresses the average absolute error as a
percentage of observed values, making it scale-independent
and useful for comparing models across different datasets:

~

Yi=)i
Vi

1 n
MAPE = ;Z

, (15)

model = tf.keras.models.Sequential([

R? quantifies the proportion of variance in the observed
data that the model explains, indicating the model’s overall
fit, with values closer to 1 showing better explanatory
power [8]:

Z::l(yi _;i)z
> (=)

Each of these metrics provides unique insights into
model accuracy and prediction reliability.

DNNs Predictions. In the graph below, we see a
comparison of predicted values with actual values for each
time series.

The graphical analysis shows that the forecasting is
quite accurate, with DNN models being good at repeating
and understanding data trends. To confirm this, let's look
at the key metrics for each time series. The results are
presented in Table 1.

The models demonstrate a generally strong predictive
performance. The Mean Squared Error (MSE) and Mean
Absolute Error (MAE) vary across stocks, with MSFT and
NVDA having higher MSE and MAE values, suggesting
greater variance in prediction accuracy for these assets.
In contrast, AAPL and V exhibit lower MSE and MAE,
indicating more accurate predictions. The Mean Absolute
Percentage Error (MAPE) is also relatively low across the
board, with V achieving the lowest at 0.825, reflecting high
prediction reliability in percentage terms. The R? values are
consistently high (above 0.97 for all stocks), showing the
model’s strong ability to capture the variance in the data.
Overall, while the DNN model performs well, prediction
accuracy could be improved for stocks with higher MSE
and MAE, such as MSFT and NVDA.

RNNs Predictions. The graph below shows a
comparison between the predicted values and the actual
values for each time series.

The graphical analysis shows that prediction by RNN
models is quite accurate and shows better results than
prediction by DNN models. To confirm this, let's display
the key indicators in Table 2.

The Mean Squared Error (MSE) values indicate rela-
tively low prediction error for most stocks, especially for
GOOG (7.452) and V (8.606), while MSFT has a notably
higher MSE (25.802), suggesting greater variance in accu-
racy. Mean Absolute Error (MAE) and Mean Absolute

R =1- , (16)

tf.keras. Input(shape=(window_size, 1)),
tf.keras.layers.SimpleRNN(48, return_sequences=True, activation='relu')},
tf.keras. layers.SimpleRNN(48, activation='relu'),

tf.keras. layers.Dense(1)
1

optimizer = tf.keras.optimizers.SGD(learning ratesle-5, momentum=8.9)

model. compile(loss=tf.keras.losses.Huber(),

optimizersoptimizer,
metrics=["mae"])

history = model.fit(dataset,epochs=100, verbose=0)

Figure 2. RNN Sequential model

103

«ExoHomiuHull gicHUK HTYY "Kuigcokuli nonimexHiyHul iHcmumym”»

Ne 34,2025

AAPL AMTN GO0G
— Predcied dsts med Feedted dalh — Pradeciid Sans
30— e dits Tt S B0 e das
a4 x’ =1
sy
N i 4
.y
§aon] § :
- 130 {
(1] b a4
10 | 130
im
- - - = - -+ - - L0 e - - = —
0o W 1000 w0 WM U Bed] L)] B 1 1w LF) 00 0 10040 L) Liog % 130
g
MEFT
e Prected dals iy
—— Trus daks
i
103

Vaun

EESNNEE

Ty

a5
™0 e 1000 0% B 150 130 ®We W 0d B L0 WM 10
Figure 3. DNNs Predictions
Table 1
DNNs Predictions
AAPL AMZN GOOG MSFT NVDA \%
MSE 8.939 12.586 9.078 37.687 21.084999 8.606
MAE 2.237 2.694 2.305 4.750 3.250000 2.161
MAPE 1.158 1.653 1.518 1.216 3.801000 0.825
R? 0.979 0.973 0.970 0.977 0.980 0.969
AAPL BHIN GO0G
— Predcied sete 700 | — Peeciind data — Freaed sus
s T ik e Truw Sats Lk (B S
1
210 4 184
1
ot - ok
famn] fum £
i | 150 i 1
] e 10
o o 0
1
®mo w0 o o Mo 1% w0 ol ™ e M 1m0

mr w0 W% L0
e

00 wWo 0 w0
i

Famn

RN

3

Fredcted Sals
T daks

™0 M0 100 0% B N0 10
o

104

®Wo W M0d B L0 MW W0
Eanm

Figure 4. RNNs Predictions

WO B0 100 W0 WS U

Weas

a0

ISSN: 2307-5651 (Print), 2412-5296 (Online) N2 34,2025
Table 2
RNNSs Predictions
AAPL AMZN GOOG MSFT NVDA \%

MSE 9.041 9.356 7.452 25.802 10.213 8.606

MAE 2.227 2.264 1.915 3.932 2.221 2.161

MAPE 1.157 1.394 1.267 1.003 2.543 0.825

R? 0.979 0.980 0.976 0.985 0.990 0.969

Percentage Error (MAPE) metrics are similarly consistent
across stocks, with MSFT and NVDA showing slightly
elevated values, reflecting less precise predictions for these
assets. The R? values are very high, with all stocks exceeding
0.96, which demonstrates the RNN model's effectiveness in
capturing the variance within the data and providing reliable
forecasts. NVDA achieves the highest R? (0.990), suggest-
ing excellent alignment between predicted and actual values.
Overall, the RNN model displays strong forecasting perfor-
mance across most stocks, with room for improvement in
cases like MSFT, where prediction variance is higher.

Portfolio Building. For the final analysis of the results,
we will build portfolios based on the predicted values of
DNN, RNN, and on the actual values. We will present the
results in the form of a comparative Table 3:

Based on these indicators, we have weighting factors
for each portfolio compared to the actual weights:

Based on the results, the RNN model provides a more
accurate prediction for portfolio construction. The RNN-
predicted income 0.186 is closer to the actual income
0.191 than the DNN's prediction 0f 0.260, indicating a better
alignment with real performance. Additionally, while both
models estimate lower risk than the actual risk of 1.429, the
RNN model’s risk prediction 1.076 is slightly closer to the
actual value compared to the DNN's risk prediction 1.016.

In terms of portfolio weights, the RNN model's weights
are generally closer to the actual distribution, particularly
for V and NVDA. Therefore, the RNN model is the more
accurate predictor overall.

Conclusions. This study presents a comparative
analysis of two Data Mining techniques, Deep Neural
Networks (DNN) and Recurrent Neural Networks (RNN),
for portfolio optimization.

The research findings reveal that both DNN and RNN
models provide reliable forecasts for stock prices, as
demonstrated by high R? values for all analyzed stocks,
indicating eachmodel’s capacity to explain variance effectively.
However, the RNN model consistently outperforms the DNN
in terms of prediction accuracy across most metrics. The RNN
model achieved lower Mean Squared Error (MSE) and Mean
Absolute Percentage Error (MAPE) for several stocks. This
superior performance may be attributed to RNN's sequential
structure, which allows it to capture temporal dependencies
essential in stock market data.

In the context of portfolio construction, RNN predictions
also yield a portfolio with income and risk figures closer to
the actual values than those derived from DNN predictions.
The RNN-predicted income of 0.186 is closer to the actual
income of 0.191, compared to the DNN’s 0.260. Addition-
ally, the RNN model’s risk prediction (1.076) aligns more
closely with the actual portfolio risk (1.429) than the DNN’s

Table 3 1.016. Furthermore, the RNN-generated portfolio weights,
Portfolio Results particularly for high-weight assets like V and NVDA,
DNN RNN Actual closely resemble the actual portfolio distribution, highlight-
Income 0.260 0.186 0.191 ing its superior predictive accuracy in asset allocation.

Risk 1.016 1.076 1.429 While .bqth models coptrlbute valuable insights into
stock prediction and portfolio management, the RNN model
Table 4 demonstrates a stronger overall performance. The sequen-
Portfolio Weights tial l'eaming' capability Qf RNNs'makes them bette'r suited
DNN RNN Actual for time series analysis in financial forecasting. This study
AAPL 0010 0.082 0148 conﬁnps the .pof[ent.ial of Data Miping methods to enhance
portfolio optimization by providing more accurate fore-

AMZN 0.010 0.010 0.010 .. . - .
GOOG 0.010 0.010 0.010 casts, enabling investors to make data-driven decisions with
: : : greater confidence. Future research could explore hybrid
MSFT 0.039 0.010 0.010 approaches, combining RNNs with more complex network
NVDA 0.641 0.393 0.370 types like LSTM or GRU, to further refine portfolio fore-

v 0.290 0.495 0.452 casting accuracy in volatile markets.
References:

1. Mazhara G. A., Krykun Y. O. Modeling of the optimal investment portfolio focused on risk minimization. Modern Economics.
2023. Ne 38(2023). P. 69-75. DOI: https://doi.org/10.31521/modecon.V38(2023)-11

2.9.4. Use of modern portfolio theory in portfolio management. Capital asset pricing model (CAPM). The required rate of return.
Arbitrage theory. Evaluation of the effectiveness of portfolio management. Performance criteria. Available at: https://buklib.net/

books/26654/

3. Modeling portfolio returns and risk. Available at: https://pidru4niki.com/15660721/investuvannya/modelyuvannya dohidnosti

riziku_portfely

4. Yu Pengfei & Yan Xuesong. (2020). Stock price prediction based on deep neural networks. Neural Computing and Applications.
32.10.1007/s00521-019-04212-x. Available at: https://www.researchgate.net/publication/332488706_Stock price prediction based

on_deep neural networks

105

«ExoHomiuHull gicHUK HTYY "Kuigcokuli nonimexHiyHul iHcmumym”» N2 34,2025

5. Lazarenko 1., Krykun Y. Potrfolio management with time series analysis methods. Available at: https://ev.fmm.kpi.ua/article/

view/309267/300787

6. Neural Network Layers: All You Need Is Inside Comprehensive Overview. Available at: https://hackernoon.com/neural-network-
layers-all-you-need-is-an-inside-comprehensive-overview

7. Rectifier (neural networks). Available at: https://en.wikipedia.org/wiki/Rectifier (neural networks)

8. Wenxiang Li, K. L. Eddie Law. Deep Learning Models for Time Series Forecasting: A Review. Available
at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10583885

Crarts Hagiinuia: 26.08.2025

Crarts npuiiasra: 14.09.2025
Crarts omy6mikoBana: 09.10.2025

106

