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PORTFOLIO MANAGEMENT WITH DATA MINING TECHNIQUES 
IN TIME SERIES ANALYSIS

This study explores the application of Data Mining techniques, specifically deep neural networks (DNN) and recurrent 
neural networks (RNN), for optimizing stock portfolios. Using time series data, we compare the performance of DNN and 
RNN models in predicting stock prices and constructing optimal portfolios. Key evaluation metrics demonstrate that the RNN 
model's forecasts yield a portfolio with income and risk metrics that closely match actual values, outperforming the DNN 
model. Furthermore, the RNN model's portfolio weights show a stronger alignment with actual distributions, indicating superior 
predictive accuracy in asset allocation. This study concludes that RNN, with their inherent capability for processing sequential 
data, are particularly well-suited for time series forecasting in financial applications.
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УПРАВЛІННЯ ПОРТФЕЛЕМ ЦІННИХ ПАПЕРІВ 
З ВИКОРИСТАННЯМ МЕТОДІВ ІНТЕЛЕКТУАЛЬНОГО АНАЛІЗУ ДАНИХ 

У АНАЛІЗІ ЧАСОВИХ РЯДІВ

У даній статті комплексно досліджується застосування передових методів інтелектуального аналізу даних 
(Data Mining), зокрема глибоких нейронних мереж (DNN) та рекурентних нейронних мереж (RNN), для оптимізації 
управління інвестиційними портфелями. Незважаючи на теоретичну цінність класичних портфельних теорій, їхня 
неефективність у умовах швидкозмінних ринків обумовлює необхідність розробки сучасних підходів до прогнозування 
фондових ринків. Дане дослідження ґрунтується на аналізі часових рядів із застосуванням порівняльного підходу до 
оцінки ефективності моделей DNN та RNN у прогнозуванні динаміки цін акцій та подальшій оптимізації структу-
ри інвестиційного портфеля. Результати дослідження, отримані на основі ключових метрик якості (MSE, MAE, 
MAPE,  ), демонструють перевагу моделі RNN, яка системно показує кращу відповідність реальним ринковим даним 
у порівнянні з DNN. Прогнозні моделі, побудовані на основі RNN, дозволяють формувати портфель з оптимальними 
співвідношеннями доходу та ризику, максимально наближеними до реальних ринкових умов, а також забезпечують 
більш точний розподіл ваг активів. Це свідчить про вищу прогностичну точність RNN у задачах розподілу активів 
та управління портфелем. Можна зробити висновок, що RNN, завдяки архітектурі, орієнтованій на обробку послі-
довних даних, є перспективнішим інструментом для прогнозування фінансових часових рядів. Отримані результати 
підкреслюють потенціал методів інтелектуального аналізу даних для вдосконалення інвестиційних стратегій та 
обґрунтовують необхідність подальших досліджень щодо розробки гібридних моделей для оптимізації портфелів у 
умовах високої ринкової волатильності. Окрім того, в статті розглядаються практичні аспекти імплементації цих 
моделей у реальні системи торгівлі, аналізуються обмеження, пов'язані з їхнім застосуванням, та пропонуються 
напрями подальших досліджень для подолання цих обмежень. Дослідження також висвітлює важливість обробки 
великих масивів даних реального часу та необхідність адаптації моделей до різних ринкових режимів для забезпечен-
ня стабільної ефективності.

Ключові слова: управління інвестиційним портфелем, методи інтелектуального аналізу даних, глибокі нейронні 
мережі, рекурентні нейронні мережі, інвестування.
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Problem statement. In the context of an active war 
phase, the question of investing funds in foreign securities 
has become increasingly relevant for Ukrainian investors. 
One of the most attractive and relatively low-risk options is 
the U.S. stock market, which has demonstrated resilience 
even during global financial crises. Constructing a stock 
portfolio is a complex process that requires a broad skill 
set, encompassing not only portfolio theory but also an 
understanding of stock market trends and the impact of 
geopolitics and economic shifts on the global economy.

While traditional methods for constructing an optimal 
portfolio date back to the 1950s and have been extensively 
studied, these approaches have limitations due to their 
inability to fully account for current trends and rapid changes 
in the economy. This research aims to explore a modernized 
approach to portfolio optimization by applying Data Mining 
techniques in time series analysis. Contemporary Data 
Mining methods, such as Deep Neural Networks (DNN) and 
Recurrent Neural Networks (RNN), enhance the accuracy 
of stock predictions, demonstrating significantly higher 
precision than classical algorithms like ARIMA. These 
models not only improve forecasting but also allow for 
portfolio construction across different timeframes, including 
forecasts for several months into the future.

This study conducts a comparative analysis of two 
types of neural networks: DNN and RNN. This compari-
son is somewhat unconventional, as stock price forecast-
ing typically utilizes another type of recurrent neural net-
work – Long Short-Term Memory (LSTM). Based on the 
predicted values, a stock portfolio will be constructed, and 
the forecasted outcomes will be compared with actual port-
folio performance. This analysis will help determine which 
method performs better on a selected set of corporate secu-
rities, providing insights into the efficacy of Data Mining 
techniques in portfolio management.

Analysis of recent research and publications. The lit-
erature review should begin with an examination of classi-
cal portfolio theory, pioneered by the renowned American 
economist Harry Markowitz. American economist Harry 
Markowitz was one of the first to recognize the advantages 
of optimizing a stock portfolio, writing a dissertation on 
“Portfolio Selection” in 1952. Modern Portfolio Theory 
(MPT) remains a widely adopted investment strategy that 
contrasts with traditional stock picking. MPT provides 
tools for portfolio management that, when applied cor-
rectly, can help create a diversified and profitable invest-
ment portfolio [1].

MPT is a theory of financial investments that employs 
statistical methods to optimize risk distribution in a securi-
ties portfolio and to estimate returns. Key components of 
this theory include asset valuation, investment decision-
making, portfolio optimization, and performance measure-
ment. Despite its abstract nature and lack of consideration 
for practical aspects like taxes and operational costs, as 
well as assumptions about infinite divisibility of assets and 
uniform investor information, MPT and its advancements 
in CAPM and arbitrage theory have significant practical 
value. These models offer foundational insights into ba-
lancing portfolio returns and risk [2].

On an ideal securities market, portfolio managers can 
analyze market trends, forecast future performance, and 
evaluate the investment characteristics of financial instru-
ments. Theoretical aspects of MPT reveal general patterns 
in the securities market, enabling effective criteria for prac-

tical application. MPT assumes that in developed financial 
markets, institutions are well-informed and operational 
costs are negligible relative to transaction volumes, allow-
ing these factors to be disregarded in certain cases [2].

Markowitz's model presents portfolio formation as a 
combination of potential investments, with the primary 
goal being to find optimal asset allocation proportions 
that minimize risk for a given level of return or maximize 
expected returns at an acceptable risk level. The model 
identifies an “efficient” portfolio, which offers the least risk 
at a specified return level, but it does not suggest a single 
optimal portfolio.

These theoretical developments are crucial for inves-
tors, allowing a rational approach to building a stock 
portfolio that considers risk levels and expected returns. 
An optimal portfolio helps diversify risks and maximize 
potential returns. Additionally, Markowitz’s model and 
MPT enable investors to make informed decisions and 
effectively manage their investments.

Key assumptions of the Markowitz model include:
1.	Expected returns are represented by the mathemati-

cal expectation of returns.
2.	Risk is represented by the standard deviation of 

returns.
3.	Past data used in return and risk calculations fully 

reflect future values.
4.	The correlation coefficient expresses the degree and 

nature of relationships between securities [3].
Markowitz’s formula allows investors to mathemati-

cally align risk tolerance with reward expectations, form-
ing an ideal portfolio. This theory is based on two core 
principles:

1.	Every investor aims to maximize return at any risk 
level.

2.	Risk can be reduced by diversifying a portfolio with 
uncorrelated securities.

In stock market prediction, accurate forecasting of 
stock prices is highly valuable for investors and analysts. 
Data Mining techniques, especially Dense Neural Net-
works (DNNs) and Simple Recurrent Neural Networks 
(RNNs), have been widely applied for time series forecast-
ing due to their ability to model complex, non-linear pat-
terns inherent in financial data. Both methods offer distinct 
advantages in processing and forecasting stock prices, with 
DNNs excelling in capturing static patterns and RNNs in 
handling sequential data and temporal dependencies.

DNNs, also known as fully connected networks, consist 
of multiple layers of interconnected neurons. Each neuron 
in a layer is connected to every neuron in the preceding and 
succeeding layers, enabling the model to capture patterns 
by learning non-linear transformations through its lay-
ers. DNNs are advantageous for tasks where relationships 
between features are non-linear and complex, which aligns 
well with stock market data's inherent unpredictability [4].

In stock prediction, DNNs are often applied to trans-
form historical stock prices, trading volumes, and various 
financial indicators into useful feature representations. By 
learning from historical data, a DNN can generalize pat-
terns such as the impact of trading volume on stock price 
trends or the correlation between prices of different stocks. 
For example, a model trained with price movements over 
the last year may capture essential patterns indicating 
growth, stability, or volatility, which aids in predicting 
future stock behaviour.
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One limitation of DNNs is their lack of inherent 
sequential memory, which makes it challenging to capture 
time dependencies. Stock prices, however, rely heavily 
on historical prices and events, often demanding a model 
with memory to retain information about the sequence of 
past observations. This limitation makes DNNs more suit-
able for static features or scenarios where past trends are 
assumed to have limited long-term influence.

Simple RNNs are a natural fit for time series forecast-
ing due to their ability to maintain a sequential under-
standing of data over time. Unlike DNNs, RNNs are 
designed with loops within their architecture, allowing 
them to “remember” previous outputs by storing infor-
mation about past inputs. This memory-like structure is 
well-suited for tasks that involve temporal dependencies, 
such as predicting future stock prices based on historical 
price sequences.

In stock prediction, RNNs are trained on sequences of 
past stock prices, and they learn patterns that can inform 
the future trajectory of the price. This includes identifying 
trends, such as cyclical price patterns or momentum, which 
are characteristic of stock market behavior. For instance, an 
RNN model can learn from past upswings and downswings 
in stock prices, adjusting predictions based on recent pat-
terns rather than treating each data point in isolation. Such 
a method enables the model to forecast prices more effec-
tively by taking advantage of the correlation across differ-
ent time steps.

However, Simple RNNs are not without limitations. 
One primary drawback is their tendency to suffer from van-
ishing gradient issues, which can lead to the model “forget-
ting” information from earlier time steps. This problem can 
affect prediction accuracy, particularly when forecasting 
based on long time series, which is typical in stock market 
analysis. Advanced variants like Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Unit (GRU) networks 
have been introduced to mitigate this issue, though Simple 
RNNs are still useful in shorter-term or smaller-scale time 
series prediction tasks [4].

Formulating the purposes of the article. This 
research aims to develop a modernized portfolio optimi-
zation framework that enhances the classical Markowitz 
theory through the integration of forward-looking risk 
assessment methodologies. The primary objective is to 
address the inherent limitation of traditional models, which 
rely exclusively on ex-post factual data and consequently 
fail to adequately incorporate prevailing market trends and 
future dynamics.

To achieve this objective, the study formalizes a multi-
criteria optimization problem that simultaneously maxi-
mizes expected return and minimizes portfolio risk by 
converging these dual objectives into a single minimiza-
tion functional subject to constraints. A crucial scientific 
contribution involves the proposed substitution of the his-
torical covariance matrix with its forecasted counterpart, 
enabling more accurate quantification of future stochastic 
dependencies among assets.

Leveraging contemporary big data analytics capabili-
ties, the proposed approach facilitates the construction of 
more adaptive and robust portfolios capable of respond-
ing to evolving market conditions, rather than merely 
reflecting their historical behavior. This methodological 
advancement represents a significant departure from con-
ventional portfolio optimization techniques by incorpo-

rating probabilistic forward-looking measures into the 
risk-return paradigm.

Presentation of the main research material. In 
accordance with Markowitz's theory, the expected return 
of a portfolio is calculated by a formula that integrates 
various factors and their interrelations:

 =∑ ,p i i
i

R R w

where Rp is the return on the portfolio,
Ri – return on the asset,
wi – share of the asset in the portfolio.
The portfolio's expected risk quantifies its potential 

for loss, indicating the likelihood of capital reduction 
based on the chosen asset allocation and weights. The 
expected portfolio risk is mathematically represented as 
the standard deviation of its return. Prior to obtaining this 
standard deviation, we first calculate the return variance, 
which measures the dispersion or fluctuation in the returns 
of assets. A higher variance implies a greater volatility 
risk, as actual returns may diverge from expectations. In 
Markowitz's framework, this variance is defined by:

( ) σ = = σ∑∑ ∑∑2 ,p i j i j i j ij
i j i j

w w cov R R w w

where σ2
p is the variance of portfolio returns.

The portfolio's expected risk, or standard deviation, is 
derived as:

σ = σ2 ,p p

This portfolio is constructed based on Markowitz's 
portfolio theory, incorporating specific modifications. The 
expected return and risk of the portfolio are calculated using 
formulas (1) to (3). For effective optimization, focusing on 
both return maximization and risk minimization, multi-
criteria optimization is applied.

The first criterion is the expected return function, 
optimized as follows:

 = →1 ,pf R max

The second criterion is to minimize the total portfolio 
risk:

 =σ →2 ,pf min

With both objective functions established, we proceed 
to a convolution of criteria, optimizing the objective 
function for a minimum while subject to the constraints:
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Having defined the main criterion and constraints, we 
have an optimization problem to find the optimal stock 
portfolio:
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With the development of technologies and Big Data 
tools, Markowitz's theory can be easily applied in practice 
for a large set of different papers in a portfolio. Despite 
this, Markowitz's theory has a significant flaw – the lack 
of consideration for market trends. To overcome this flaw 
in Markowitz's theory, a modernized method of calculating 
the covariance matrix is applied, which is used for risk 
calculation – forecasting the covariance matrix of risks [5].

Deep Neural Networks with Dense Layers. A dense 
neural network, also called a fully connected or feed-
forward neural network, is built by stacking several layers of 
neurons. In this structure, each layer is linked to all neurons 
in the previous layer, enabling the model to detect and learn 
data patterns. In a sequential model, data passes through 
each layer one after another, moving from input to output. 
The mathematical representation of a dense layer is:

( )  = + ,y f Wx b

where W – weight matrix,
x – input vector,
b – bias vector,
f – activation function (in our case ReLU) [6].
The ReLU (Rectified Linear Unit) activation function 

outputs the input directly if it is positive; otherwise, it returns 
zero, allowing for faster training by introducing non-linearity 
while mitigating the vanishing gradient problem. The formula 
for the ReLU (Rectified Linear Unit) activation function is:

( ) ( )
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= = =  ≤
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0 02

xif xx x
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where x – the input to a neuron [7].
The output layer is a single neuron that provides the pre-

dicted stock price at the next time step. For regression tasks, 
the output neuron typically uses a linear activation function:



( ) ( ) ( ) ( )  
−

−

=
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i
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where ( )L
iw  – the weights of the output layer,

b(L)  – the bias of the output layer,
y  – they predicted stock price for the next time step.
In Python, the Sequential model with dense layers is 

structured as follows.
The model followed by three dense (fully connected) 

hidden layers with ReLU activations and neuron counts 
of 150, 100, and 50, respectively. The output layer has 
a single neuron for the final prediction. The model is 
optimized with Stochastic Gradient Descent (SGD) with 
momentum, set at a learning rate of 10-6 and a momentum 
factor of 0.9, and is compiled with Mean Squared Error 
(MSE) as the loss function. It is trained over 150 epochs 
on the given dataset.

Recurrent Neural Networks. Recurrent layers, 
first introduced in the 1980s, form the foundational 
structure of Recurrent Neural Networks (RNNs), which 
are specifically engineered to handle sequential data. 
This design makes RNNs well-suited for applications in 
natural language processing, time series forecasting, and 
sequence-to-sequence learning. A notable early model is 
the Elman Network, developed by Jeff Elman. Recurrent 
layers incorporate an internal hidden state that evolves 
dynamically over time, enabling the network to retain 
information from previous time steps. The update of this 
hidden state is mathematically expressed as:

( )( )    = ⋅ + ⋅ − +1 ,t x t h hh f W h x W h h t b

where ht – hidden state at time step t,
xt – input at time step t,
Wxh – input-to-hidden weight matrix,
Whh – hidden-to-hidden weight matrix,
bh – bias vector,
f – activation function (in our case ReLU) [6].

Figure 1. DNN with Dense Layers structure
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For the RNN model, the same activation function 
is used, which can be seen in formula (10). In Python, 
the RNN Sequential model with SimpleRNN layers is 
structured as follows.

The model consists of an input layer with a specified 
window size, followed by two SimpleRNN layers with 
40 units each, using the ReLU activation function. The first 
RNN layer returns sequences, feeding into the second RNN 
layer, which connects to a final Dense layer with a single 
output neuron for regression. The model uses the Huber loss 
function and is optimized with Stochastic Gradient Descent 
(SGD) with a learning rate of 10-5 and momentum of 0.9, 
and it tracks Mean Absolute Error (MAE) as a performance 
metric. Training is conducted over 100 epochs on the 
provided dataset.

Evaluation Metrics. In time series analysis, four 
primary metrics are commonly employed to evaluate 
model performance: Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Mean Absolute Percentage Error 
(MAPE), and the Coefficient of Determination (R²).

MAE measures the average magnitude of errors 
between predicted and observed values, without regard to 
direction, providing a straightforward interpretation of the 
typical prediction error [8]:



=

= −∑
1

1
,

n

i i
i

MAE y y
n

where yi – the observed value,


iy  – the predicted value,
n – the total number of observations.
MSE calculates the average of the squared differences 

between predicted and observed values, penalizing 
larger errors more heavily and highlighting significant 
discrepancies [8]:
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1
,
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MAPE expresses the average absolute error as a 
percentage of observed values, making it scale-independent 
and useful for comparing models across different datasets:


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R2 quantifies the proportion of variance in the observed 
data that the model explains, indicating the model’s overall 
fit, with values closer to 1 showing better explanatory 
power [8]:
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Each of these metrics provides unique insights into 
model accuracy and prediction reliability.

DNNs Predictions. In the graph below, we see a 
comparison of predicted values with actual values for each 
time series.

The graphical analysis shows that the forecasting is 
quite accurate, with DNN models being good at repeating 
and understanding data trends. To confirm this, let's look 
at the key metrics for each time series. The results are 
presented in Table 1.

The models demonstrate a generally strong predictive 
performance. The Mean Squared Error (MSE) and Mean 
Absolute Error (MAE) vary across stocks, with MSFT and 
NVDA having higher MSE and MAE values, suggesting 
greater variance in prediction accuracy for these assets. 
In contrast, AAPL and V exhibit lower MSE and MAE, 
indicating more accurate predictions. The Mean Absolute 
Percentage Error (MAPE) is also relatively low across the 
board, with V achieving the lowest at 0.825, reflecting high 
prediction reliability in percentage terms. The R2 values are 
consistently high (above 0.97 for all stocks), showing the 
model’s strong ability to capture the variance in the data. 
Overall, while the DNN model performs well, prediction 
accuracy could be improved for stocks with higher MSE 
and MAE, such as MSFT and NVDA.

RNNs Predictions. The graph below shows a 
comparison between the predicted values and the actual 
values for each time series.

The graphical analysis shows that prediction by RNN 
models is quite accurate and shows better results than 
prediction by DNN models. To confirm this, let's display 
the key indicators in Table 2.

The Mean Squared Error (MSE) values indicate rela-
tively low prediction error for most stocks, especially for 
GOOG (7.452) and V (8.606), while MSFT has a notably 
higher MSE (25.802), suggesting greater variance in accu-
racy. Mean Absolute Error (MAE) and Mean Absolute 

Figure 2. RNN Sequential model
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Figure 3. DNNs Predictions

Table 1
DNNs Predictions

AAPL AMZN GOOG MSFT NVDA V
MSE 8.939 12.586 9.078 37.687 21.084999 8.606
MAE 2.237 2.694 2.305 4.750 3.250000 2.161

MAPE 1.158 1.653 1.518 1.216 3.801000 0.825
R2 0.979 0.973 0.970 0.977 0.980 0.969

Figure 4. RNNs Predictions
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Percentage Error (MAPE) metrics are similarly consistent 
across stocks, with MSFT and NVDA showing slightly 
elevated values, reflecting less precise predictions for these 
assets. The R² values are very high, with all stocks exceeding 
0.96, which demonstrates the RNN model's effectiveness in 
capturing the variance within the data and providing reliable 
forecasts. NVDA achieves the highest R² (0.990), suggest-
ing excellent alignment between predicted and actual values. 
Overall, the RNN model displays strong forecasting perfor-
mance across most stocks, with room for improvement in 
cases like MSFT, where prediction variance is higher.

Portfolio Building. For the final analysis of the results, 
we will build portfolios based on the predicted values of 
DNN, RNN, and on the actual values. We will present the 
results in the form of a comparative Table 3:

Based on these indicators, we have weighting factors 
for each portfolio compared to the actual weights:

Based on the results, the RNN model provides a more 
accurate prediction for portfolio construction. The RNN-
predicted income 0.186 is closer to the actual income 
0.191 than the DNN's prediction of 0.260, indicating a better 
alignment with real performance. Additionally, while both 
models estimate lower risk than the actual risk of 1.429, the 
RNN model’s risk prediction 1.076 is slightly closer to the 
actual value compared to the DNN's risk prediction 1.016. 

In terms of portfolio weights, the RNN model's weights 
are generally closer to the actual distribution, particularly 
for V and NVDA. Therefore, the RNN model is the more 
accurate predictor overall.

Conclusions. This study presents a comparative 
analysis of two Data Mining techniques, Deep Neural 
Networks (DNN) and Recurrent Neural Networks (RNN), 
for portfolio optimization.

The research findings reveal that both DNN and RNN 
models provide reliable forecasts for stock prices, as 
demonstrated by high R² values for all analyzed stocks, 
indicating each model’s capacity to explain variance effectively. 
However, the RNN model consistently outperforms the DNN 
in terms of prediction accuracy across most metrics. The RNN 
model achieved lower Mean Squared Error (MSE) and Mean 
Absolute Percentage Error (MAPE) for several stocks. This 
superior performance may be attributed to RNN's sequential 
structure, which allows it to capture temporal dependencies 
essential in stock market data.

In the context of portfolio construction, RNN predictions 
also yield a portfolio with income and risk figures closer to 
the actual values than those derived from DNN predictions. 
The RNN-predicted income of 0.186 is closer to the actual 
income of 0.191, compared to the DNN’s 0.260. Addition-
ally, the RNN model’s risk prediction (1.076) aligns more 
closely with the actual portfolio risk (1.429) than the DNN’s 
1.016. Furthermore, the RNN-generated portfolio weights, 
particularly for high-weight assets like V and NVDA, 
closely resemble the actual portfolio distribution, highlight-
ing its superior predictive accuracy in asset allocation.

While both models contribute valuable insights into 
stock prediction and portfolio management, the RNN model 
demonstrates a stronger overall performance. The sequen-
tial learning capability of RNNs makes them better suited 
for time series analysis in financial forecasting. This study 
confirms the potential of Data Mining methods to enhance 
portfolio optimization by providing more accurate fore-
casts, enabling investors to make data-driven decisions with 
greater confidence. Future research could explore hybrid 
approaches, combining RNNs with more complex network 
types like LSTM or GRU, to further refine portfolio fore-
casting accuracy in volatile markets.

Table 2
RNNs Predictions

AAPL AMZN GOOG MSFT NVDA V
MSE 9.041 9.356 7.452 25.802 10.213 8.606
MAE 2.227 2.264 1.915 3.932 2.221 2.161

MAPE 1.157 1.394 1.267 1.003 2.543 0.825
R2 0.979 0.980 0.976 0.985 0.990 0.969

Table 3
Portfolio Results

DNN RNN Actual
Income 0.260 0.186 0.191

Risk 1.016 1.076 1.429

Table 4
Portfolio Weights

DNN RNN Actual
AAPL 0.010 0.082 0.148
AMZN 0.010 0.010 0.010
GOOG 0.010 0.010 0.010
MSFT 0.039 0.010 0.010
NVDA 0.641 0.393 0.370

V 0.290 0.495 0.452
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